Algebraic weak factorisation systems I: Accessible AWFS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Weak Factorisation Systems I: Accessible Awfs

Algebraic weak factorisation systems (awfs) refine weak factorisation systems by requiring that the assignations sending a map to its first and second factors should underlie an interacting comonad–monad pair on the arrow category. We provide a comprehensive treatment of the basic theory of awfs—drawing on work of previous authors—and complete the theory with two main new results. The first pro...

متن کامل

Algebraic Weak Factorisation Systems Ii: Categories of Weak Maps

We investigate the categories of weak maps associated to an algebraic weak factorisation system (awfs) in the sense of Grandis–Tholen [14]. For any awfs on a category with an initial object, cofibrant replacement forms a comonad, and the category of (left) weak maps associated to the awfs is by definition the Kleisli category of this comonad. We exhibit categories of weak maps as a kind of “hom...

متن کامل

Cofibrantly generated natural weak factorisation systems

There is an “algebraisation” of the notion of weak factorisation system (w.f.s.) known as a natural weak factorisation system. In it, the two classes of maps of a w.f.s. are replaced by two categories of maps-with-structure, where the extra structure on a map now encodes a choice of liftings with respect to the other class. This extra structure has pleasant consequences: for example, a natural ...

متن کامل

Higher Dimensional Categories: Model Categories and Weak Factorisation Systems

Loosely speaking, “homotopy theory” is a perspective which treats objects as equivalent if they have the same “shape” which, for a category theorist, occurs when there exists a certain class W of morphisms that one would like to invert, but which are not in fact isomorphisms. Model categories provide a setting in which one can do “abstract homotopy theory” in subjects far removed from the origi...

متن کامل

An algebraic weak factorisation system on 01-substitution sets: a constructive proof

We will construct an algebraic weak factorisation system on the category of 01-substitution sets such that the R-algebras are precisely the Kan fibrations together with a choice of Kan filling operation. The proof is based on Garner’s small object argument for algebraic weak factorisation systems. In order to ensure the proof is valid constructively, rather than applying the general small objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2016

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2015.06.002